Miscellaneous error bounds for multiquadric and related interpolators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extension of the Exponential-type Error Bounds for Multiquadric and Gaussian Interpolations

In the 1990’s exponential-type error bounds appeared in the theory of radial basis functions. For multiquadric interpolation it is O(λ 1 d ) as d → 0, where λ is a constant satisfying 0 < λ < 1. For Gaussian interpolation it is O(C d) c′ d as d → 0 where C ′ and c are constants. In both cases the parameter d, called fill distance, measures the spacing of the points where interpolation occurs. T...

متن کامل

On the High-Level Error Bound for Multiquadric and Inverse Multiquadric Interpolations

It’s well-known that there is a so-called high-level error bound for multiquadric and inverse multiquadric interpolations, which was put forward by Madych and Nelson in 1992. It’s of the form |f(x)− s(x)| ≤ λ 1 d ‖f‖h where 0 < λ < 1 is a constant, d is the fill distance which roughly speaking measures the spacing of the data points, s(x) is the interpolating function of f(x), and h denotes the...

متن کامل

Approximation Error for Quasi-Interpolators and (Multi-)Wavelet Expansions

We investigate the approximation properties of general polynomial preserving operators that approximate a function into some scaled subspace of L via an appropriate sequence of inner products. In particular, we consider integer shift-invariant approximations such as those provided by splines and wavelets, as well as finite elements and multi-wavelets which use multiple generators. We estimate t...

متن کامل

Bounds and error bounds for queueing networks

Queueing networks are an important means to model and evaluate a variety of practical systems. Unfortunately, analytic results are often not available. Numerical computation may then have to be employed. Or, system modifications might be suggested to obtain simple bounds or computationally easy approximations. Formal analytic support for the accuaracy or nature of such modifications or approxim...

متن کامل

Error Bounds for Minimal

We derive error bounds for bivariate spline interpolants which are calculated by minimizing certain natural energy norms. x1. Introduction Suppose we are given values ff(v)g v2V of an unknown function f at a set V of scattered points in IR 2. To approximate f, we choose a linear space S of polynomial splines of degree d deened on a triangulation 4 with vertices at the points of V. be the set of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1992

ISSN: 0898-1221

DOI: 10.1016/0898-1221(92)90175-h